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Statistical mechanics for unstable states in Gel’fand triplets and investigations
of parabolic potential barriers
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Free energies and other thermodynamical quantities are investigated in canonical and grand canonical
ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates
with complex energy eigenvalues in the conjugate space of Gel’fand triplet. The theory is applied to the
systems containing parabolic potential barriers~PPB’s!. The entropy and energy productions from PPB sys-
tems are studied. An equilibrium for a chemical process described by reactionsA1CB�AC1B is also
discussed.
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I. INTRODUCTION

Many experimental and theoretical investigations sh
that thermodynamics is a fundamental dynamics for desc
ing realistic phenomena governed by temperatures. We
know that quantum mechanics is a fundamental one to
scribe microscopic processes. And we believe that statis
mechanics is a theory connecting quantum mechanic
thermodynamics. In statistical mechanics we know that
so-called ‘‘principle of equala priori probability’’ is taken
as the guiding principle in the construction of the theory a
the Boltzmann entropy is the key word connecting the t
fundamental dynamics. Rigorously speaking, thermodyn
ics is applicable only to true equilibriums described by t
maximums of entropies. We, however, know the fact t
thermodynamics is applicable to phenomena which
slowly varying with time, such as phenomena in chemi
processes, cosmological processes and so on. This fact
cates that the principle of thermodynamics can also be ap
cable to those phenomena varying very slowly as compa
with time scales needed for making thermal equilibriums
cally. In statistical mechanics states included in the coun
thermodynamical weights are the eigenstates of quantum
chanics which can have only real energy eigenvalues on
bert spaces. All eigenstates in Hilbert spaces are stable
then there is no possibility for introducing the changes w
respect to time in statistical mechanics based on quan
mechanics on Hilbert spaces. At present, therefore, we h
no reliable theory to investigate paths which connect an
tial equilibrium to a final equilibrium. Taking account of th
fact that thermodynamics can be applicable to some phen
ena slowly varying with time, it seems to be very interesti
that we examine statistical mechanics on some exten
spaces including unstable states. For this purpose we find
an interesting possibility of the extension of Hilbert spaces
the conjugate spaces in Gel’fand triplets@1#, where complex
energy eigenvalues describing unstable states are invo
A Gel’fand triplet consists of the following triplet:

F,H,F3,
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where F, H, and F3, respectively, stand for a nuclea
space, Hilbert space and the conjugate space ofF. From this
relation we see that the conjugate spaceF3 of the Gel’fand
triplet contains the original Hilbert spaceH and in general it
can include eigenstates with complex energy eigenva
that are not included in the original Hilbert spaceH. It
should also be noticeable that the complex energy eigen
ues are represented by pairs of complex conjugates suc
a7 ib for a,bPR, that is, since HamiltoniansĤ are real on
F, for any solutionscPF3 satisfying the equation

Ĥc5~a2 ib !c for a,bPR,

we always find solutions having complex conjugate eig
values such that

Ĥc* 5~a1 ib !c* .

An explicit example has been presented in a parabolic po
tial barrier ~PPB! V(x)52mg2x2/2, where the energy ei
genvalues are obtained by7 i (n11/2)\g, n being positive
integers including zero@2–7#. We can see that there is
possibility that the imaginary parts of energy eigenvalu
cancel each other in many body states consisting of the s
with complex energy eigenvalues in Gel’fand triplets a
then the total imaginary part of the many body states can
very small including exact zero value. Furthermore we c
expect stationary states with zero imaginary energy eigen
ues in more than two-dimensinal space. Such an example
been presented in the two-dimensional PPBV(x,y)
52mg2(x21y2)/2, where the eigenvalues including ze
energy eigenvalue are obtained as7 i (nx2ny)\g, wherenx
andny are positive integers including zero. From the eige
values we see that the stationary states with the zero en
eigenvalue appear fornx5ny and the states with an equa
energy are infinitely degenerate@8#. It has been shown tha
the degeneracy plays an interesting role to investigate vo
structures that are determined by nodes of wave functi
described in terms of the superposition of the infinitely d
generate states@8#. It is natural that we expect that some kin
©2001 The American Physical Society01-1
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of statistical mechanics will be applicable to the systems
volving the states with complex energy eigenvalues in
conjugate spaces of Gel’fand triplets.

It is known that states with complex energies have b
investigated in terms of the method of complex scal
@9,10# and the analytical continuation of semiclassical so
tions @11–13#. They have been successfully applied to so
chemical processes@9,10# and helium negative ion reso
nances@11–13#. In these methods the complex scaling
solutions of Hilbert spaces and the analytical continuation
semiclassical solutions solved by the WKB approximatio
are used. In such cases, however, the states with neg
imaginary energies are chosen, while those with posi
imaginary energies are eliminated. This choice is quite na
ral, because the decay processes that are described b
states with the negative imaginary energies are experim
tally observed whereas the states with the positive imagin
energies that represent the processes forming resona
cannot directly be observed in experiments. In the PPB c
the situation is same, that is, the states with negative im
nary energies represent the resonance decays which ar
pressed by well-known Breit-Wigner resonance formul
whereas those with positive imaginary energies represen
resonance formations.~For details, see Ref.@6#.! It is, how-
ever, noted that both processes, the decay processes an
formation processes, generally coexist in many body s
tems. A similar situation occurs in the two-dimensional PP
that is, the analytical continuation from the solutions of t
two-dimentional harmonic oscillator~HO! derives the states
having the energy eigenvalues7 i (nx1ny11)\g, which do
not contain any stationary states and represent diverging
converging flows. The abovementioned states with the
ergy eigenvalues7 i (nx2ny)\g including the stationary
states, which satisfy the different boundary condition fro
those taken in the original HO and represent corner flo
cannot be obtained by the analytical continuation.~For de-
tails, see Ref.@8#.! In statistical mechanics the comple
knowledge of the states in the physical space are require
the count of the number of different states describing co
plex systems~thermodynamical weight!. For the purpose of
the exact evaluation of thermodynamical weight we have
construct statistical mechanics on Gel’fand triplets.

In a previous paper@14# we have shown the fundament
idea of the extension of statistical mechanics on Hilb
spaces to that on the conjugate spaces of Gel’fand triplet
the basis of principle of equala priori probability and de-
rived canonical distributions with a common time scale. T
fundamental difference between statistical mechanics on
bert spaces~SMHS! and that on Gel’fand triplets~SMGT!
appears in the count of the states for the evaluation of t
modynamical weight, that is, the new freedom arising fro
the states with imaginary eigenvalues appears in SM
while there is no such freedom in SMHS. This fact chang
the entropyS which is defined by

S~E!5kB ln W~E!, ~1!

whereW(E) is the thermodynamical weight at the total com
plex energyE5E2 iG andkB is the Boltzmann constant. In
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the evaluation ofW(E) two freedoms that arise from th
variety of the combinations for composing the real part
the total energyE5( ie i and that for composing the imag
nary oneG5( ig i must be taken into account, wheree i and
g i , respectively, denote the real and imaginary parts of
complex energy eigenvalue« i5e i2 ig i for the i th constitu-
ent. Provided that there is no correlation between the
energy eigenvalues and the imaginary ones,W is given by
the product of the thermodynamical weight for the real p
WRe(E) and that for the imaginary partWIm(G)

W~E!5WRe~E!WIm~G!. ~2!

Thus the entropy in SMGT is represented by the sum of
Boltzmann entropySRe(E) and the new oneSIm(G) induced
from the freedom of the imaginary energy eigenvalues s
that

S~E!5SRe~E!1SIm~G!, ~3!

where SRe(E)5kB ln WRe(E) and S Im(G)5kB ln WIm(G).
An explicit example for Eqs.~2! and ~3! was presented in
Ref. @15# by using parabolic potentials. The canonical dist
bution has also been derived as

P~Elm!5Z21exp~2bReEl2b ImGm!, ~4!

where the canonical partition function is given by

Z5(
l

(
m

exp~2bReEl2b ImGm!.

In the partition function the twob factors are related to the
two temperatures as

bRe[b5~kBT!21, BIm5~kBTIm!21, ~5!

whereT is the usual temperature of canonical distributio
andTIm is newly introduced in SMGT@14#. Comparing the
time-dependence of the probability distributions for t
quantum states on Gel’fand triplets having the total ima
nary energyG, which is given bye22Gt/\, with that of the
canonical distribution, we have derived the relationb Im

52t/\ with the common time-scalet @14#, that is, TIm

5\/2kBt. ~For details, see Ref.@14#.! We should understand
that the canonical distribution is meaningful whenuGu is
small enough to make a thermal equilibrium before t
change of the physical properties of the total system. In f
we see that such situations can happen, that is,uGu can be as
small as possible, including exact zero value, because
Gel’fand triplet formalism@1# all eigenvalues appear in th
pair of complex conjugates such ase7 ig and then the total
imaginary partG can be zero. It is a striking fact that ther
exist stable systems which are composed of unstable st
An example for the stable systems was presented in Ref.@14#
in terms of the two-dimensional parabolic potential barrie
~PPB’s!. It should also be noted that in the two-dimension
PPB we can show the existence of stationary states with
imaginary eigenvalue which are understood as station
flows round the center of the PPB@8#. By using the station-
1-2
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STATISTICAL MECHANICS FOR UNSTABLE STATES . . . PHYSICAL REVIEW E 63 056101
ary states the energy and entropy productions from the P
were studied and the entropy transfer fromSIm to SRe was
suggested@15#. This new idea for statistical mechanics see
to have many interesting applications such as chemical
cesses, energy production processes without nuclear fus
the birth of the Universe, and so forth.

In a previous paper@14# we presented the fundament
idea for the extension of SMHS to SMGT and derived t
canonical distribution with the common time scale. The p
sentation is, however, not enough to understand SMGT w
for instance, thermodynamical functions except the entr
are not discussed. In this paper we would like to investig
the new statistical mechanics, i.e., SMGT involving unsta
states on Gel’fand triplets more precisely. Namely, therm
dynamical quantities such as free energies and chemica
tentials will be investigated in SMGT in Secs. II and II
Consistency of the theory will be examined in terms
simple PPB models in Sec. IV. We can expect that the P
is a good approximation to potentials standing for repuls
forces being very weak at the center, as the HO is w
known to be a good approximation to potentials standing
attractive forces being very weak at the center. The entr
transfer fromSIm to SRe and the energy production are stu
ied through a decay of a resonance system in the PPB in
V. An equilibrium for a simple process described by rea
tions A1CB�AC1B will be discussed in this scheme i
Sec. VI. Throughout this paper we deal with the processe
which the real and the imaginary parts of the total energy
the system can be independently determined such as the
of parabolic potentials as discussed in Sec. IV.

II. FREE ENERGIES IN CANONICAL ENSEMBLE

Let us start from the canonical distribution of Eq. 4. In t
present case where the real and the imaginary energies o
system can be independently determined, the canonical
tition function for the system composed ofN constituents can
be obtained as the product of the partition function for
real part and that for the imaginary one such that

ZN~T,t !5ZN
Re~T!ZN

Im~ t !, ~6!

where

ZN
Re~T!5(

l
exp~2bEl !, ZN

Im~ t !5(
m

exp~2b ImGm!.

Following the same argument carried out in SMHS, we ha
two ~Helmholtz! free energies corresponding to the usu
free energy for the real partFRe and that for the imaginary
part F Im as

FRe~T!52b21 ln ZN
Re, F Im~ t !52~b Im!21 ln ZN

Im .
~7!

The mean energies are obtained as usual

Ē5
]

]b
@bFRe~T!#, Ḡ5

]

]b Im
@b ImF Im~T!#. ~8!
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The relations with respect to other quantities derived fr
FRe such as the total volumeV, the pressurep and so forth
are same as SMHS. At present, however, it is not an e
problem to clarify whether new quantities derived fromF Im

are physically meaningful or not. The entropiesSRe andSIm

are derived from the free energies as

SRe52
]

]T
FRe~T!, SIm52

]

]TIm
F Im~ t !. ~9!

The consistency ofSIm given in Eq.~9! with that of Eq.~3!
given in microcanonical ensemble@14# will be studied in a
PPB model in Sec. IV. In general the entropySIm and the

mean valueḠ have time dependence, which will also b
investigated in the PPB model. The free energies satisfy
usual relation of SMHS such that

FRe5Ē2TSRe, F Im5Ḡ2TImSIm. ~10!

Since we do not know what are good observables in unst
systems and still have only one example of PPB to ad
SMGT @15#, we have to examine SMGT more in other rea
istic examples in order to understand the meanings of SM
in details.

III. GRAND CANONICAL ENSEMBLE

The most prominent aim of SMGT is the introduction
time dependence through the decay of the constituent
systems. This means that the total number of constitue
composing the systems also varies with time. This situat
will be well described in grand canonical ensemble. In t
construction of grand canonical ensemble the number of
constituents should be represented by natural numberN
(N50,1,2, . . . ). Then we construct the grand partition fun
tion as

J5 (
N50

`

ebmNZN , ~11!

whereZN is the partition function for the total numberN and
given by the productZN

ReZN
Im . In the definition ofJ the usual

factorb is taken so as to coincide with the partition functio
of SMHS when the freedom of the imaginary part disa
pears. The chemical potentialm, of course, differs from that
of SMHS and generally has the time dependence. The
cific difference ofJ from ZN is seen in the forms of Eqs.~6!
and ~11!, that is, the contributions from the real and th
imaginary parts cannot be separated inJ, whereas they are
separated as the product inZN . We, therefore, have only on
thermodynamical function in the grand canonical ensem
given by

J~T,t,m!52b21 ln J. ~12!

The mean number is obtained by

N̄5b21
]

]m
ln J ~13!
1-3
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which have the time dependence in general. An exampl
the time dependence will be seen in a PPB model.

Taking into account that the contributions of the real a
imaginary parts are not separable inJ, the maximum of the
probability in the grand canonical ensemble appears at

J/T5Ē/T2SRe1Ḡ/TIm2SIm2N̄~]S/]N!, ~14!

where the relations]SRe/]E51/T and ]SIm/]G51/TIm are
used@14#. Now we can see that the definition of the chemic
potentialm is given by the relation

m

T
52

]S

]N
, ~15!

where S5SRe1SIm. The Gibbs free energyG is given as
usual

G5mN̄. ~16!

Note that the relation between the thermodynamical fu
tions J5F2G in SMHS should not be adopted. In SMG
the relation should be read as

J/T5FRe/T1F Im/TIm2G/T. ~17!

In simple cases where all constituents can be treate
independent each other, the canonical partition function
written by the

ZN5~Z1!N, ~18!

whereZ15Z1
ReZ1

Im is the partition function for one constitu
ent. We then obtain

J5~12ebmZ1!21 ~19!

with the constraint for the chemical potential

ebmZ1,1.

When the constituents cannot be identified each other suc
free particles, we should have

J5 (
N50

`

ebmN
~Z1!N

N!
~20!

and then we get

J5exp~ebmZ1!.

IV. SIMPLE EXAMPLES

A. HO¿PPB case

We shall here examine SMGT in a simple example tha
represented by one-dimensional harmonic oscillator~HO! 1
one-dimensional parabolic potential barrier~PPB!

V~x,y!5
1

2
mv2x22

1

2
mg2y2,
05610
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wherem is a constant with the mass dimension. The eig
values of HO is well known as

«nx
5S nx1

1

2D\v ~21!

and the eigenvalues of PPB on the Gel’fand triplet a
known to be pure imaginary values as@2–7#

«ny
57 i S ny1

1

2D\g, ~22!

wherenx andny are natural numbersnx , ny50,1,2, . . . . It
is known that the7 of the eigenvalues in PPB, respectivel
stand for the decaying and growing resonance states. In
section we shall deal only with the states having the nega
imaginary eigenvalues of PPB, which represent the decay
resonances for the time scalet>0 @1–7#. Then the energy of
a constituent is written by

«nxny
5S nx1

1

2D\v2 i S ny1
1

2D\g. ~23!

~1! Microcanonical ensemble. Let us start from microca-
nonical ensemble for the system composed ofN independent
particles being in the above potentialV(x,y). The total com-
plex energy of the systemE is represented by

E MReM Im5S MRe1
1

2
ND\v2 i S M Im1

1

2
ND\g, ~24!

whereMRe5( i 51
N nxi andM Im5( i 51

N nyi . Hereafter we shall
use the notationsE5(MRe1N/2)\v for the total real energy
andG5(M Im1N/2)\g for the total imaginary energy. The
thermodynamical weight is evaluated as

WN~MRe,M Im!5WN
Re~MRe!WN

Im~M Im!, ~25!

where

WN
Re~MRe!5

~MRe1N21!!

MRe! ~N21!!
,

WN
Im~M Im!5

~M Im1N21!!

M Im! ~N21!!
.

The entropy is obtained by

S~E!5SRe~E!1SIm~G!,

where the contributions from the real and imaginary parts
expressed in the same form as

S•5kB@~M •1N!ln~M •1N!2M •ln M •2N ln N#,
~26!

where • denotes Re or Im andM •,N@1 are postulated as
usual. The complete symmetry between the contributions
HO and PPB in the entropy originates from the complet
same structure of the total real and imaginary parts of
1-4
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energy. We can introduce two temperatures correspondin
two constraints for giving the maximum of the entropyS as
@14#

1

T
5

]SRe

]E
,

1

TIm
5

]SIm

]G
. ~27!

The explicit forms are obtained as

1

T
5

kB

\v
ln

E/N1\v/2

E/N2\v/2
,

1

TIm
5

kB

\g
ln

G/N1\g/2

G/N2\g/2
.

~28!

Everything can be derived from the entropies, following t
argument carried out in SMHS, e.g.,

E5NS 1

2
\v1

\v

eb\v21
D , G5NS 1

2
\g1

\g

eb Im\g21
D .

~29!

Since b Im52t/\, we see the time dependence of the to
imaginary energyG in the second equation of Eq.~29!,
which will be examined afterwards.

~2! Canonical ensemble. Following the argument given in
Sec. II, the partition functions for the real and imagina
parts are obtained as

ZN
• 5S e2b•\V/2

12e2b•\VD N

, ~30!

where V5v in the real part for•5Re andV5g in the
imaginary part for•5Im should be taken. The derivations o
the free energiesFRe andF Im given in Eq.~7! are trivial. It is
easy to examine that the mean values ofE andG are same as
those derived in Eq.~29! of microcanonical ensemble. Th
entropies of Eq.~9! are evaluated as

S•5NkBFb•\V
eb•\V

eb•\V21
2 ln~eb•\V21!G . ~31!

We also easily see that they coincide with those given in
~26! of microcanonical ensemble.

~3! Grand canonical ensemble. The present case is th
independent particle model discussed in the last of the
vious section. Then we can immediately get the partit
function from Eq.~19!;

J5
1

12ebmZ1

, ~32!

where the canonical partition functionZ1 for a particle is
given by

Z15S e2b\v/2

12e2b\vD S e2b Im\g/2

12e2b Im\gD .

The mean number is obtained as
05610
to

l

q.

e-
n

N̄5
ebmZ1

12ebmZ1

. ~33!

From this equation the chemical potential is expressed b

m5b21F1

2
b\v1 ln~12e2b\v!1

1

2
b Im\g

1 ln~12e2b Im\g!2 lnS 11
1

N̄
D G . ~34!

For N̄@1 the contribution of the last term in the right-han
side of the above equation vanishes. Then we see the be
ior of m for small t as follows:

m; ln gt for t→0. ~35!

The divergence att50 appears so as to cancel the dive
gence ofZ1

Im at t50, because in the canonical distributio

~4! the dumping factore2b ImG disappears att50 and then
Z1

Im becomes infinity, of which divergence is easily obtain
as thet21 type. Note here that the divergences also appea

SIm and Ḡ as lnt and t21 types, respectively.
Thus we obtain thet dependence of all thermodynamic

quantities for the systems involving unstable states for sm
t values.

B. d-dimensional free motion¿ PPB case

Let us briefly discuss one more example described by
d-dimensional free motion1 PPB, where the equation o
states with respect to the temperatureT, volumeV, and pres-
surep are treatable. Here we study the problem in terms
T-p distribution of which partition function is defined by

Y5E
0

`

e2bpVZNdV, ~36!

where the canonical partion functionZN5ZN
ReZN

Im . The real
part ZN

Re for the free motions is given by

ZN
Re5

1

N!

1

~2p\!dN
VN~2pmkBT!dN/2 ~37!

and the imaginary partZN
Im for the one-dimensional PPB i

the same as that of the previous model. After the integra
we have

Y5
1

~2p\!dN
~2pmkBT!dN/2S kBT

p D N11

ZN
Im . ~38!

From the thermodynamical relationG52b21 ln Y for N
@1 we obtain
1-5
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G52Nb21Fd12

2
ln T2 ln p1 ln

md/2kB
(d12)/2

~2p\2!d/2

2
1

2
b Im\g2 ln~12e2b Im\g!G . ~39!

The equation of states is immediately derived from the re
tion V5]G/]p as usual

pV5NkBT.

Note here that this equation describes the relation betweV
and p for the free motions. In order to answer the quest
whether physical quantities for the imaginary freedom cor
sponding to the volume and the pressure are meaningfu
not, we have to study the meanings of continuous imagin
spectra on Gel’fand triplet, which do not represent us
resonances described by the Breit-Wigner resonance form
in cross sections.

The chemical potential is gotten from the relationG
5mN as

m5kBTF ln
p

kBT S 2p\2

mkBTD d/2

1
1

2
b Im\g1 ln~12e2b Im\g!G .

~40!

It has thet dependence of the lnt type at smallt, which is
same as the previous case given by Eq.~34!. The same resul
for m can be obtained in grand canonical ensemble, wh
the numberN should be replaced by the mean numberN̄.
From the above examples we see that SMGT is applicab
realistic processes.

V. ENTROPY TRANSFER FROM SIm TO SRe

Let us consider the entropy transfer fromSIm to SRe in an
adiabatic process described by a decay of a system th
composed ofN resonances in a one-dimensional PPB1some
ordinary potentials, where the ordinary potentials mean
tentials which are described by Hilbert spaces and the
tems described the potentials can have thermal equilibri
of SMHS. We can, therefore, consider thatSIm andSRe, re-
spectively, stand for the entropy of the PPB system and
of the ordinary system. Here we study the process where
decays of the resonance system are absorbed into the sy
described by the ordinary potentials. After the decay p
cesses are opened att50, the entropy of the system being
the PPB is obtained from Eq.~31! as

SIm5NkBF2gt
e2gt

e2gt21
2 ln~e2gt21!G . ~41!

For smallt such thatgt!1/2 the entropy behaves

SIm.2NkB ln t ~42!

where t5gt. As already noted, it diverges att50. This
relation gives us
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dSIm52NkB

dt

t
for t!

1

2
. ~43!

Since the total entropy conserves in the adiabatic proc
that is, the relation

dS5dSRe1dSIm50 ~44!

holds, we have the relation

dSRe52dSIm. ~45!

Note here thatdSRe is always positive becausedSIm,0 is
kept. In the system described only by PPB’s the tempera
T originated from the freedom of real energy eigenvalues
zero, i.e.,T50, since the system has no real energy freedo
This means that the temperature must be zero att50, i.e.,
just at the moment when the decay processes are opened
us write it as

T~ t !5K0td for t!
1

2
. ~46!

whereK0 andd should be positive constants. Since the dire
observable in this process is the real energyERe released into
the ordinary potentials by the decay of resonances,
should evaluate the real energy produced in this process.
the smallt we have

dERe5T~ t !dSRe5NkBK0td21dt for t!
1

2
. ~47!

Then we can estimate the real energy produced in the pro
during the short period from 0 tot (!1/2g) as

ERe5E
0

gtdERe

dt
dt5NkB

K0

d
~gt !d. ~48!

Since d.0, this process produces a real positive ener
Even if SIm diverges att50, we obtain a finite energy pro
duction. The unknown constantsK0 andd will depend on the
property of the system where the produced energy is
sorbed. We see that the system in PPB’s can be the sour
the energy production. It, of course, does not mean the br
down of the energy conservation law. In the process wh
the system is composed in the PPB the real energy produ
in the decay process is stored asSIm in the system. This
means that the total produced energy which is evaluated
the integration fromt50 to ` must coincide with the energy
consumed in the process for making the initial system. T
integration will derive a relation betweenK0 andd.

VI. EQUILIBRIUM OF A PROCESS DESCRIBED
BY REACTIONS A¿CBoAC¿B

As discussed by Child, the chemical reactionA1CB
→AC1B is well described by the potential having tw
bumps@16,17#. Connor studied the reaction by representi
the potential in terms of PPB’s@18#. They investigated the
reaction cross sections of the processes in the WKB met
1-6
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and showed that the cross sections were given by the B
Wigner resonance formula. The Breit-Wigner formulas
the cross-sections for PPB scatterings have already been
tained in our scheme based on the Gel’fand triplet@6#. Here
we shall study chemical equilibriums of the systems conta
ing two reactionsA1CB→AC1B and AC1B→A1CB
(A1CB�AC1B) simultaneously. We study the cas
where the potentials for the exchanged particleC is de-
scribed by two one-dimensional PPB’s having the center
the positions ofA and B which are spatially separate
enough to treat them as two independent systems. The
constants of the systemsA andB are denoted byg1 andg2,
respectively. The total systems are described by an ense
composed of N number of independent reactionsA
1CB�AC1B. In the present discussion we postulate th
the systemsA andB are heavy enough to neglect their mov
ments in the interactions withC. Note here that the reactio
A1CB→AC1B describing the process that the particleC
is approaching toA is understood as the growing resonan
state for the systemA, but the same process is, on the oth
hand, understood as the decaying resonance state for the
temB because the particleC is leaving fromB. The reaction
AC1B→A1CB describing the process thatC is approach-
ing to B is understood vice versa. From this consideration
the growing and decaying resonance states, we see that
are the following relations between the number of the gro
ing resonancesN1

2 for the systemAC and that of the decay
ing resonancesN2

1 for the systemBC and also between th
number of the decaying onesN1

1 for AC and that of the
growing onesN2

2 for BC;

N1
25N2

1 , N1
15N2

2 . ~49!

Thus the total numberN is expressed by the sumN5N1
2

1N1
1 provided that we pay attention to the systemAC,

whereas it is written down by the sumN5N2
11N2

2 from the
side of the systemBC. In microcanonical ensemble th
imaginary parts of the energies of the growing and decay
states for the reactionsA1CB�AC1B are, respectively,
given by

G1
25S M1

21
1

2
N1

2D\g1 , G2
15S M2

11
1

2
N1

2D\g2 ,

for A1CB→AC1B,

G2
25S M2

21
1

2
N1

1D\g2 , G1
15S M1

11
1

2
N1

1D\g1 ,

for AC1B→A1CB

~50!

where the imaginary parts are defined byE i
657 iG i

6 ~suffix
i 51,2), Mi

650,1,2, . . . , and therelations of Eq.~49! are
used. Note that the total imaginary energies ofAC andBC
are written byE152 i (G1

12G1
2) andE252 i (G2

12G2
2), re-

spectively. In the equilibrium the relations

G1
25G2

1 , G1
15G2

2 ~51!
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must be satisfied, since thet dependence of the canonic
ensemble for the reactionA1CB→AC1B, which is given

by e2b Im(G2
1

2G1
2), and that forAC1B→A1CB given by

e2b Im(G1
1

2G2
2) must vanish in the equilibrium. Now we hav

the thermodynamical weight as

W5W1W2 , ~52!

where
~53!

W15
~M1

11N1
121!!

M1
1! ~N1

121!!

~M1
21N2N1

121!!

M1
2! ~N2N1

121!!
,

W25
~M2

21N1
121!!

M2
2! ~N1

121!!

~M2
11N2N1

121!!

M2
1! ~N2N1

121!!

The maximum of the entropy is realized at the point, whe
the relation

]

]N1
1 ln W5 ln

~M1
11N1

1!~M2
21N1

1!~N2N1
1!2

~M1
21N2N1

1!~M2
11N2N1

1!~N1
1!2 50,

~54!

is fulfilled, whereM ,N@1 are used. We have the equatio
satisfied in the equilibrium

~M1
21N1

2!~M2
11N1

2!~N1
1!2

5~M1
11N1

1!~M2
21N1

1!~N1
2!2, ~55!

where N1
25N2N1

1 is put. By using the relations of Eqs
~50! and ~51! we obtain the equation

S G1
2

N1
2 1

1

2
\g1D S G1

2

N1
2 1

1

2
\g2D

5S G1
1

N1
1 1

1

2
\g1D S G1

1

N1
1 1

1

2
\g2D . ~56!

Taking account of the constraintsG1
2/N1

2.0 and G1
1/N1

1

.0, we get the solution

G1
2

N1
2

5
G1

1

N1
1

. ~57!

This result shows that the mean grow width for a growi
resonanceG1

2/N1
2 , is equal to the mean decay width for

decaying resonanceG1
1/N1

1 for the systemAC. From the
relations of Eqs.~49! and ~51! we can, of course, derive th
relationG2

2/N2
25G2

1/N2
1 for the systemBC. Generally the

relations

G1
2

N1
2

5
G1

1

N1
1

5
G2

2

N2
2

5
G2

1

N2
1

~58!

are obtained. These relations indicate that a kind of bala
such as a detailed balance is held between the grow
cesses and the decay ones in the reactionA1CB�AC1B.
Though this model is too much simple to describe realis
1-7
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chemical processes, we can at least say that this sch
~SMGT! is consistent with our primitive understandings.

VII. DISCUSSION

We have proposed a statistical mechanics which can c
tains unstable states on Gel’fand triplets~SMGT! and ap-
plied it to a few simple processes. The validity of this the
retical scheme will be examined by applying it to ma
realistic processes and by comparing with experiments.
should, however, remember that SMGT is applicable to
processes where the change of systems with respect to
are so slow that the systems can be dealt with as being
thermal equilibrium at any moment.
id
ue

iff

J

s.

te

05610
me

n-

-

e
e
me

a

Here we shall comment on a general formula for the eq
tion of motion for the mean values in canonical ensemb
Provided that the real and imaginary parts are separabl
the canonical distribution given by Eq.~4!, the mean value of
the quantityA(G) is obtained by

Ā5E A~G!e2b ImGWIm~G!dGY E e2b ImGWIm~G!dG.

~59!

In general we should consider that the average with res
to the real energy part has already been taken as forA(G).
The derivative ofĀ with respect tot is evaluated as
dĀ

dt
5

2

\ H 2E GA~G!e2b ImGWIm~G!dG

E e2b ImGWIm~G!dG

1

E A~G!e2b ImGWIm~G!dGE Ge2b ImGWIm~G!dG

F E e2b ImGWIm~G!dG G2 J 5
2

\
~2GA1ḠĀ!.

~60!
ses

n-
ary
o-

by

the
For A5G we have the equation

dḠ

dt
52

2

\
~DG!2,0, ~61!

where (DG)25Ḡ 22(Ḡ)2. This equation means thatḠ be-
comes small in the time evolution in all processes. Cons
ering the fact that states with large imaginary eigenval
decay rapidly, we can comply with this result.
-
s

Throughout this paper we have discussed the ca
where the total real and imaginary partsE and G are
independently determined. Gel’fand triplets, however, co
tain many other solutions such that the real and imagin
eigenvaluese and g have some correlations. In such pr
cesses the thermodynamical weight cannot be obtained
the simple product ofWRe andWIm as given in Eq.~2! @14#.
Study of such processes is still an open question in
present SMGT.
oc.
@1# A. Bohm and M. Gedella,Dirac Kets, Gamow Vectors and
Gel’fand Triplets, Vol. 348 of Lecture Notes in Physics
~Springer, Berlin, 1989!.

@2# G. Barton, Ann. Phys.~N.Y.! 166, 322 ~1986!.
@3# P. Briet, J. M. Combes, and P. Duclos, Commun. Partial D

Eqns.12, 201 ~1987!.
@4# N. L. Balazs and A. Voros, Ann. Phys.~N.Y.! 199, 123~1990!.
@5# M. Castagnino, R. Diener, L. Lara, and G. Puccini, Int.

Theor. Phys.36, 2349~1997!.
@6# T. Shimbori and T. Kobayashi, Nuovo Cimento Soc. Ital. Fi

B 115, 325 ~2000!.
@7# T. Shimbori, Phys. Lett. A273, 37 ~2000!.
@8# T. Shimbori and T. Kobayashi, J. Phys. A33, 7637~2000!.
@9# O. Atabek, R. Lefebvre, M. Garcia Sucre, J. Gomez-Lloren
.

.

,

,

and H. Taylor, Int. J. Quantum Chem.15, 211 ~1991!.
@10# N. Moiseyev, Phys. Rep.302, 211 ~1983!.
@11# A. M. Loughan and D. S. F. Crothers, Phys. Rev. Lett.79,

4966 ~1997!.
@12# A. M. Loughan and D. S. F. Crothers, J. Phys. B31, 2153

~1998!.
@13# D. S. F. Crothers and A. M. Loughan, Philos. Trans. R. S

London, Ser. A357, 1391~1999!.
@14# T. Kobayashi and T. Shimbori, e-print cond-mat/0005237.
@15# T. Kobayashi and T. Shimbori, Phys. Lett. A280, 23 ~2001!.
@16# M. S. Child, Proc. R. Soc. London, Ser. A292, 272 ~1966!.
@17# M. S. Child, Mol. Phys.12, 401 ~1967!.
@18# J. N. L. Connor, Mol. Phys.15, 37 ~1968!.
1-8


